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Abstract: Large language models (LLMs) are becoming ubiquitous in knowledge work. However, 
the uncertainty inherent to LLM summary generation limits the efficacy of human-machine 
teaming, especially when users are unable to properly calibrate their trust in automation. Visual 
conventions for signifying uncertainty and interface design strategies for engaging users are 
needed to realize the full potential of LLMs. We report on an exploratory interdisciplinary project 
that resulted in four main contributions to explainable artificial intelligence in and beyond an 
intelligence analysis context. First, we provide and evaluate eight potential visual conventions 
for representing uncertainty in LLM summaries. Second, we describe a framework for uncertainty 
specific to LLM technology. Third, we specify 10 features for a proposed LLM validation system — 
the Multiple Agent Validation System (MAVS) — that utilizes the visual conventions, the framework, 
and three virtual agents to aid in language analysis. Fourth, we provide and describe four MAVS 
prototypes, one as an interactive simulation interface and the others as narrative interface videos. 
All four utilize a language analysis scenario to educate users on the potential of LLM technology 
in human-machine teams. To demonstrate applicability of the contributions beyond intelligence 
analysis, we also consider LLM-derived uncertainty in clinical decision-making in medicine and in 
climate forecasting. Ultimately, this investigation makes a case for the importance of visual and 
interface design in shaping the development of LLM technology. 

Implications for practice: This article provides guidance on explainability and transparency for 
AI interface design through the consideration of uncertainty in LLM summaries. Our Uncertainty 
Framework for Explainable Summaries (UFES) can guide system design and help users interpret 
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and act on LLM outputs. Our specifications for 10 features in a Multiple Agent Validation System 
(MAVS) can be implemented with current technology to aid user understanding, trust calibration, 
and decision-making. As an open resource, we provide eight visualization options with readable 
code that represent uncertainty within relevant passages of text. We also include four prototypes 
of MAVS to reference for implementation, or to educate stakeholders on the value of LLMs when 
carefully leveraged. While we situate this guidance in an intelligence analysis context, outcomes 
are relevant to any LLM systems that produce summaries of information. 

Statement of applicability: This is a visual and interface design investigation in the context of 
intelligence analysis (specifically language analysis). It is relevant to any human-centered applica-
tion of LLM technology that explicitly addresses uncertainty in outputs.

Application domains: intelligence analysis, knowledge work, computer science (LLM technology 
and RAG), psychology, and human-computer interaction; connections are also drawn to LLM use 
in medicine (diagnosis) and climate science (forecasting).

Keywords: explainable AI; human-machine teaming; intelligence analysis; large language models; 
trust calibration; uncertainty; user interface design; visual representation

1.	 Introduction

Researchers and practitioners increasingly rely on generative artificial intelligence 
(AI) systems as essential tools for navigating information-dense environments. When 
faced with vast quantities of information, humans can deploy large language models 
(LLMs) — AI systems trained to understand and generate human language — to efficiently 
summarize content. But these summaries are not foolproof. LLM summaries will 
always include a level of uncertainty. And we do not yet have a conventional means for 
understanding this uncertainty or for presenting it to users. Without this, users cannot 
properly calibrate their trust in AI systems, leaving the full potential of human-machine 
teaming unrealized.

This article addresses the need to visually signify the uncertainty specific to LLM 
summaries, to guide that signification with an uncertainty framework, and to situate 
the resulting signification and explanation using interface design strategies. We do 
this by reporting on a 12-month design investigation that examines uncertainty in LLM 
summaries for the intelligence community, funded by the United States  Department 
of Defense and focused on language analysis — analysis where source information, 
or intelligence traffic, primarily takes the form of transcribed or written language. 
This investigation was a collaboration with the Laboratory for Analytic Sciences 
(LAS), which supports the advancement of technology and tradecraft relevant to the 
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mission of the United States intelligence community. Among other research areas, LAS 
focuses on human-machine teaming, particularly the optimal utilization of automated 
systems by intelligence analysts. This high-stakes, security-critical space demands 
exceptional precision, making it an ideal test environment for AI explainability and 
LLM uncertainty. 

The investigation began as an exploration of uncertainty visualization and expanded 
to encompass a proposal for an interactive system with multiple LLM agents that assist 
language analysts in summary validation. The resulting validation process enables 
critical trust calibration between analysts and the AI system. It is directly relevant to 
LLM use by all knowledge workers beyond the intelligence context, and further, to any 
situation that is dependent upon LLM summarization for decision-making. The general 
contributions of this investigation, as articulated in this article, are:

1.	 An open resource of implementable visual conventions for representing 
uncertainty, with criteria for selecting among them (Section 4).

2.	 A framework for uncertainty in LLM summaries (Section 5).
3.	 Design specifications for a Multiple Agent Validation System (MAVS) to empower 

knowledge workers while helping them calibrate trust in AI, including a 
10-element feature set (Section 6).

4.	 Rich prototypes for alternative versions of MAVS. The prototypes include a simula-
tion interface that allows users to utilize MAVS in a scripted scenario (Section 
7.1) and three narrative interfaces that enrich the MAVS concept by envisioning 
dynamically reconfigurable user interface implementations (Section 7.2).

Further special contributions for the design community are:

5.	 The investigation’s overall process, which is a model that can readily be adapted 
for any design investigations that involve collaboration with non-design experts 
and that center visual exploration in their activities (Section 3). 

6.	 Similarly adaptable processes for developing a framework (Section 5.1), producing 
a range of visual studies (Section 4), and designing speculative interfaces with a 
STEM focus on implementation rather than as a mode of criticism (Section 7). 

Finally, special contributions for other communities of practice — medicine and climate 
science communities — are:

7.	 Explicit declarations regarding how this work may be applied in medical 
diagnosis and climate forecasting, as examples of application beyond the intelli-
gence analysis space (Section 8). 
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2.	  Literature Review

Language analysts in the intelligence community have only recently begun exploring 
how they might utilize LLM summaries in their workflow, shifting from direct database 
queries to increasingly relying on more opaque LLM processes of retrieval, analysis, 
and summarization. This emergent human-machine teaming can augment human 
cognitive abilities and leverage human and AI capabilities. AI-assisted human decision-
making has the potential to outperform full automation in the national security sector, 
as in other critical sectors such as medicine, law, financial services, and law enforce-
ment (Tomsett et al., 2020; Zhang et al., 2020). However, the probabilistic nature of AI 
models — leading to fundamental levels of uncertainty — necessitates human oversight 
in critical scenarios. The uncertainty specific to LLMs makes it difficult for analysts to 
gauge information reliability. When users cannot fully grasp how automated systems 
work — particularly in complex scenarios where comprehensive technical knowledge 
is impractical — their willingness to rely on the systems depends heavily on trust. If 
uncertainty and vulnerability were not factors, trust would not be necessary (Lee & 
See, 2004). 

Establishing and maintaining human trust of AI systems is quite challenging in a 
high-stakes environment. Inappropriate levels of trust between users and AI systems 
often lead to misuse (as overreliance) or disuse (as underreliance) of automation 
(Lee & See, 2004). Dietvorst et al. (2016) frame underreliance as algorithm aversion. 
Humans tend to trust algorithms until they detect that they are imperfect — and all 
algorithms are imperfect — at which point they may avoid the algorithms, bypassing 
them.  Alternatively, if an interface gives users some control over an AI’s predictions — 
and it can be very limited control — humans will have a greater tendency to use the AI, 
or to overcome algorithm aversion (Dietvorst et al., 2016). Whether due to overreliance 
or under  reliance, miscalibrated trust diminishes the benefits of using an AI system. 
Overtrusting is particularly problematic when humans reinforce their own negative 
societal biases (Stevenson, 2018; Suresh et al., 2020). The AI system can become a 
convenient excuse for problematic recommendations rather than augmenting and 
improving human decision-making. Lee and See (2004) have noted that the diminish-
ment of trust through system misuse and disuse is a closed-loop process: “If the system 
is not trusted, it is unlikely to be used; if it is not used, the operator may have limited 
information regarding its capabilities, and it is unlikely that trust will grow” (p. 68). So 
how might we interrupt the loop of diminishing trust? 

User interface design is one possible answer to the question of trust calibration. 
Appropriate trust calibration occurs when a user’s trust in an automated system 
corresponds accurately with the system’s capabilities (Lee & See, 2004). Achieving 
appropriate trust calibration can produce superior human-machine performance 
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(Sorkin & Woods, 1985; Wickens et al., 2000). Specific interface features have been 
proposed that might support the appropriate calibration of trust (e.g., Corritore et al., 
2003; Cummings, 2006). Borgo et al. (2024) synthesized 40 related papers to provide nine 
claims about the impact of interface design choices on perceived trustworthiness. Four 
of these claims are particularly relevant here:

1.	 “AI transparency, intelligibility, or explainability fosters trust,”
2.	 “Communicating uncertainty fosters trust,”
3.	 “Adding interactivity fosters trust,” and
4.	 “Social factors influence trust” (Borgo et al., 2024, pp. 23–24).

AI transparency, intelligibility, or explainability fosters trust. Interface features that 
empower users to verify results through access to and investigation of original sources 
produce transparency for otherwise opaque AI models (Borgo et al., 2024; Sultanum et 
al., 2019), positively impacting trust (Dasgupta et al., 2017; Krueger et al., 2020; Sperrle 
et al., 2021). Sultanum et al. (2019) explain that linking back to original sources enables 
users to analyze and compare source material with the LLM output. The resulting 
analysis offers insight into the LLM’s process, which helps the user more clearly delineate 
the boundaries of system capabilities and understand its outputs. Methods of delinea-
tion have frequently been addressed in the literature, although researchers disagree on 
the details (Bansal et al., 2019; Bellotti et al., 2001; Borgo et al., 2024; Doshi-Velez & Kim, 
2017; Sultanum et al., 2019; Tintarev & Masthoff, 2007; Weisz et al., 2024). 

Communicating uncertainty fosters trust. Many researchers point to the role of uncertainty 
awareness in trust calibration (Amershi et al., 2019; Bansal et al., 2019; Kocielnik et al., 
2019; Tomsett et al., 2020). A user’s trust in a system correlates directly with how well 
the user understands its underlying uncertainties (Sacha et al., p. 76). An important 
factor for such understanding is user comprehension of what a system does not or 
cannot know (Tomsett et al., 2020). Once aware of output uncertainties the user can 
more quickly form an accurate mental model of the system’s true capabilities (Tomsett 
et al., 2020, p. 2). Borgo et al. (2024) suggest that the user interface should clearly display 
the uncertainties and limitations inherent in a system’s data and results. Essential 
information about uncertainty should be prioritized to address human cognitive limita-
tions (Alhadad et al., 2018; Baldassi et al., 2006), and the design of the interface should 
carefully direct users’ attention (Shneiderman, 1996; Rosenholtz et al., 2007).

Padilla et al. (2018) consider practical strategies for reducing cognitive load during 
decision-making with visualizations. They recommend that designers focus on priori-
tizing and hierarchically structuring information: “Identify the critical  information 
needed for a task and use a visual encoding technique that directs participants’ attention 
to this information” (p. 22). Alhadad et al. (2018) suggest several strategies for directing 
attention and reducing cognitive strain through visualizations, including coherence, 
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chunking, contiguity, segmenting, and signaling. These recommendations point to the 
role visual and interaction design play in focusing the user on vital information needed 
to make decisions. 

Dual process theory (Evans & Stanovich, 2013; Padilla et al., 2018) breaks decision-
making into two types of processing: humans first make simple, lightweight decisions 
(Type 1 processing) before moving on to complex, demanding, laborious decisions 
(Type 2 processing). The dual process approach aligns with established user experience 
(UX) design principles, such as progressive disclosure through layered interfaces, the 
principle that UX should reveal increasingly complex data to users in stages or layers 
(Forsey et al., 2024; Joshi et al., 2017). Designers should leverage such strategies to 
support both Type 1 and Type 2 processing to impact trust calibration through sustained 
interaction. Simply visualizing uncertainty is not enough. 

Adding interactivity fosters trust. Borgo et al. (2024) also emphasize that interactive 
features can build trust by enabling users to test and verify system behavior; to customize 
outputs to better serve their needs; and to contribute domain expertise to improve 
performance. Hands-on interaction helps users understand a system’s capabilities and 
limitations, allowing them to better predict its behavior across different scenarios 
(p. 26). Accurately predicting system behavior across scenarios is key to successful 
trust calibration. A user’s ability to predict such behavior affects their own tendencies 
to either engage or disengage with AI. 

Social factors influence trust. Personifying an AI system as a virtual agent can foster 
trust (Weisz et al., 2024), particularly when the interface combines modalities such 
as speech, voice, and visual presence (Rheu et al., 2021). Nass and Brave (2005) argue 
that humans instinctively process artificial voices like human ones — a natural, social 
response that makes voice interfaces effective tools for building trust when designed to 
mimic human interaction patterns. Graaf and Malle (2017) showed that virtual agents 
provide an effective avenue for fostering user trust because users attribute human-like 
intentions and reasoning to AI systems. To fulfill their potential, virtual agents must be 
able to explain system actions, or else systems will remain opaque to users and mistrust 
is likely to develop (Williams et al., 2015). If virtual agents offer insightful explanations 
and exhibit human behavioral and linguistic patterns, users of AI systems can more 
easily form accurate mental models to guide system use and decision-making.

The literature thus provides guidance for addressing trust calibration. It supports these 
three key points:

1.	 Human-machine teaming can produce better results in critical decision-making 
spaces than human or AI working alone (Tomsett et al., 2020; Zhang et al., 2020; 
Zhao et al., 2023).
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2.	 Appropriate trust calibration is key to successful human-machine teaming (Lee 
& See, 2004; Sorkin & Woods, 1985; Stevenson, 2018; Suresh et al., 2020; Wickens 
et al., 2000).

3.	 Interface design can be used to effectively communicate AI capabilities and thus 
support trust calibration (Borgo et al., 2024; Corritore et al., 2003; Cummings, 
2006). 

Furthermore, the literature suggests fundamental interface design strategies for facili-
tating trust calibration (TC):

▶	 TC1: Transparency. Support trust calibration by enabling users to verify and 
interrogate LLM outputs with interface features such as direct source investi-
gation (Bellotti et al, 2001; Borgo et al., 2024; Dasgupta et al., 2017; Doshi-Velez 
& Kim, 2017; Krueger et al., 2020; Sperrle et al., 2021; Sultanum et al., 2019; 
Tintarev & Masthoff, 2007; Weisz et al., 2024). 

▶	 TC2: Visualization. Support trust calibration by visualizing uncertainty to 
communicate limitations inherent to the LLM’s data and results (Amershi et al., 
2019; Banshal et al., 2019; Borgo et al., 2024; Kocielnik et al., 2019; Sacha et al., 
2015; Tomsett et al., 2020). 

▶	 TC3: Alignment. Support trust calibration by enabling users to interact with 
visualizations in alignment with human decision-making processes (Alhadad 
et al., 2018; Baldassi et al., 2006; Evans & Stanovich, 2013; Kirschner et al., 2011; 
Padilla et al., 2018; Rosenholtz et al., 2007; Shneiderman, 1996). 

▶	 TC4: Interactivity. Support trust calibration by enabling users to affect system 
results through a range of explicit user interactions, including but not limited to 
user settings (Borgo et al., 2024; Dietvorst, 2016; Lee & See, 2004).

▶	 TC5: Virtual Agents. Support trust calibration by enabling users to conceptualize 
model functionality and seek explanation through multiple AI agents (Borgo et 
al., 2024; Graaf & Malle, 2017; Nass & Brave, 2005; Rheu et al., 2021; Weisz et al., 
2025; Williams et al., 2015).

We will revisit TC1–TC5 as we consider specific user interface features for representing 
and explaining uncertainty in LLM summaries.

3.	  Investigation Process

Early in this investigation we focused on developing a wide range of visual conventions for 
representing uncertainty in LLM summaries. This early exploratory work soon shifted 
to a more convergent, evaluative phase in which the extended multi  disciplinary collab-
orative team — language analysts, computer scientists, and psychologists informing 
design researchers — narrowed the options down from approximately 150 to eight. In 
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parallel with these visual explorations, we began adapting an existing framework for 
uncertainty (Skeels et al., 2010) but ultimately developed a new framework for classi-
fying uncertainty specific to LLM summaries. 

In a parallel phase of the project, we considered how language analysts might interact 
with visualizations of uncertainty. We realized quickly that if analysts did not appropri-
ately trust the information represented by visualizations, they would not use that 
information — in which case representational quality would be irrelevant. To address 
appropriate trust calibration, we drew from UX findings established in an earlier project 
with the Laboratory for Analytic Sciences (LAS, 2024), as well as the trust in automation 
literature. Through these efforts we gleaned five trust calibration interface strategies 
appropriate to intelligence analysis (Section 2).

Using a persona, scenarios, task flows, and interface strategies as a starting point, we 
decided to develop an interactive simulation interface, both as a concept generator 
for ourselves and as an educational tool for language analysts who use AI in their 
tradecraft. We pinpointed 10 core system features to address trust calibration within 
this simulation and cohered them into an LLM validation system concept. While the 
interactivity of the simulation enables analysts to directly experience the proposed 
system in full interaction fidelity, the requisite development time limited our own 
formative design exploration of the proposed system’s potential. To overcome this 
limitation, we pivoted to additional scenario video prototyping. The three resulting 
narrative interfaces involved no backend development, resulting in a more nimble 
iterative process that reflected our evolving understanding of uncertainty and trust. 
These narrative interfaces envision future possibilities for trust calibration in dynami-
cally reconfigurable user interfaces. This dual method of developing key interface 
features within both current and future interface structures allowed us to pivot in 
response to expert assessments, while permitting the lateral movements typical of 
design exploration. 

The orderliness of this description and this section title’s implicit suggestion of a singular 
process are both potentially misleading. As shown in Figure 1, we engaged in a 12-month 
discovery process that, through sustained interaction with our partners outside of 
design and through our own sensemaking-through-design, was neither orderly nor 
predictable. The project coordination strip in Figure 1 lists four key planning moments 
for our project. It was not until we were past the quarter mark that it became possible 
to create a “plan-out,” the first plan that envisioned the project through completion. We 
knew from experience that early efforts would need to be fulfilled before later efforts 
could be specified. These plans are visualized in Figure 1 as ripples that affected the 
main investigation outcomes because each plan synthesized collective sensemaking 
and suggested adjustments to all ongoing tasks. 
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Likewise, our work toward individual outcomes frequently caused ripples across parallel 
tasks. Figure 1 depicts these ripples as smaller than those created by the comprehen-
sive plans, but they were crucial nonetheless. As depicted, five formative investigation 
contributions caused ripples:

1.	 Uncertainty visualization (Section 4)
2.	 The uncertainty framework (Section 5)
3.	 LLM validation system specifications (Section 6)
4.	 A scenario encapsulated in the prototypes (Section 7)
5.	 The simulation interface (Section 7.1)

A sixth contribution was summative, informed by all previous work:

6.	 The narrative interfaces (Section 7.2)

It was thus through an immersive and messy process that this investigation took form. 
We now address the main investigation contributions in turn.

4.	  Uncertainty Visualization

To discover visual conventions for uncertainty in LLM summaries, we utilized design 
exploration and co-design, sharing progress in biweekly sessions with the extended 
multidisciplinary collaborative team. This meeting structure encouraged team partici
pation regarding the formal qualities of the visual studies, their effectiveness in 

Figure 1. Investigation process for the project “Developing Visual Conventions for Explainable LLM 
Outputs in Intelligence Analysis Summaries,” conducted January (“Jan”) through December. Section 
numbers are references internal to this article. Ripples represent impacts spreading from one investi-
gation component to others.
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conveying uncertainty, and the broader implications for intelligence analysis workflows 
and decision-making processes. We gathered feedback through interviews, surveys, 
and informal user testing. To ensure flexibility for incorporating visual conventions 
into summarized LLM outputs, we organized exploratory studies into three uncertainty 
cue locations: inline, embedded directly within the summary text itself; interstitial, 
positioned in the spaces between lines of text; and adjacent, appearing outside of the 
summary. To maximize variation, we did not initially concern ourselves with practi-
cality, but we later removed all impractical studies from consideration. We created 
what we called “concept zero,” a simplified interface prototype for situating visual 
conventions. In the midst of our exploration we adopted an accessible color palette 
from the IBM Design Language to address Web Content Accessibility Guidelines. 
Ultimately, we generated approximately 150 visual studies for conveying uncertainty 
in LLM summaries. 

Discussions with our collaborators also produced criteria to guide future work that 
seeks to establish a singular visual convention for representing uncertainty. Using these 
criteria, researchers could stage empirical studies relating visual conventions to mental 
models of AI and to user preferences. 

▶	 Experiential. Visualizations of uncertainty should provide a sense of severity at 
a glance, with text subjectively feeling as uncertain as it has been deemed to be.

▶	 Reflective. Visualizations of uncertainty should make sense upon reflection, 
ideally aligning with an accurate or at least useful mental model of uncertainty. 
This accuracy or utility will increase educational impact.

▶	 Legible. Uncertain text should be readable so that it can be validated by users, 
though legibility can be dynamically variable if users are permitted to inspect 
text passages, in which case a responsive system can make text clearer.

▶	 Implementable. The display of visualizations needs to be technically feasible. 
We have favored common web display technology as a gauge of implementa-
tion feasibility, including considerations of which visual conventions utilize 
prescribed display functions (e.g., blur in CSS) and which require workarounds 
(e.g., background images to approximate inline display functions that do not 
exist in CSS). 

Using these four criteria, we derived 12 options from the collection of visual studies, 
each of which we implemented in CSS (in the simulation interface, Section 7.1). In 
consultation with our collaborators, we deactivated four of these options for a total of 
eight potential visual conventions for uncertainty. These are reproduced in Figure 2. 
We evaluated these visual conventions according to the semiotic modes by which 
they operate, the conceptual implications of those modes, and the patterns of criteria 
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 fulfillment across the set. Semiotic modes and conceptual implications are documented 
in Table 1.

▶	 Semiotic modes. Four visual conventions (VCs) utilize analogies exclusively (VC1) 
or primarily (VC6–CV8). This is potentially powerful because analogies reveal 
structural similarities between two domains that reflect true characteristics 
(Gentner & Smith, 2012). Three VCs utilize metaphors (VC2–VC4), which can be 
coherent and improve understanding, while being dependent upon familiarity 
with a suggested source domain (Johnson, 1987; Lakoff & Johnson, 1980). But VC5 

Figure 2. Eight potential visual conventions for representing uncertainty severity in LLM summaries. 

VC3 VC4

VC1 VC2

VC5 VC6

VC7 VC8
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uses arbitrary distinctions of patterns, which likely limits its efficacy, requiring 
viewers to learn symbols.

▶	 Conceptual implications. Two VCs conceptualize certainty as a thing and uncertainty 
as a reduction of that thing (VC2, VC6). We suspect that this is a healthy way to view 
uncertainty. The remainder conceptualize uncertainty as a thing, which may be 
useful because uncertainty is what language analysts must interrogate. Two VCs 
are listed as being “meaning-poor” in Table 1 because their semiotic modes as 
executed do not suggest an obvious mental model, in our estimation (VC5, VC8).

Table 1. Semiotic modes and conceptual implications for the eight uncertainty-signifying visual conven-
tions shown in Figure 2.

Visual convention Evaluation: mode and implication

VC1: Strikethrough Mode: response analogy, uncertain passages should be editorially 
rejected (thin line) or redacted (thick line). 

Implication: uncertainty is a mistake. 

VC2: Transparency Mode: disappearance metaphor, uncertain passages are fading out of 
existence. 

Implication: certainty is tangibility. 

VC3: Static Mode: television-static metaphor, uncertainty makes passages difficult 
to resolve. 

Implication: uncertainty is interference in a passage-signal. 

VC4: Fill Mode: fluid-volume metaphor based on an up-is-more orientational 
metaphor. 

Implication: uncertainty is a quantity in passages. 

VC5: Pattern Mode: primarily arbitrary symbolic representation (pattern style); 
secondarily density analogy (pattern repetition interval). 

Implication: uncertainty is a pattern — this is meaning-poor — or 
uncertainty is a quantity in passages. 

VC6: Text Blur Mode: visual perceptual analogy, certain passages are focused on 
(attended to) instead of uncertain passages. 

Implication: certainty is in focus or is comfortably accessible. 

VC7: Zig-Zag Mode: primarily editorial markup analogy; secondarily wave frequency 
metaphor. 

Implication: uncertainty passages are unfinished, or uncertainty is a 
force. 

VC8: Weight Mode: primarily mass analogy; secondarily arbitrary relative representa-
tion (color).

Implication: uncertainty is conspicuous — this is meaning-poor.
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▶	 Experiential criterion. The two VCs that use graphic mark variability to differ-
entiate degrees of severity — background patterns (VC5) and wavy underlines 
(VC7) — do not appear to give an immediate impression of uncertainty. The VC 
that depends on font weight variation (VC8) is possibly too subtle for viewers 
without graphic design expertise. The remaining VCs all appear to have some 
claim to the experiential.

▶	 Reflective criterion. Our difficulty in describing the conceptual implications of the 
VCs we labeled as “meaning-poor” (VC5, VC8) would likely equate with minimal 
contributions to viewers’ understanding of uncertainty. The remaining VCs 
appear to have some claim to the reflective.

▶	 Legible criterion. Legibility was largely assured through hover states that offer 
a relatively unobstructed view of otherwise obscured text. Three VCs render 
passages of “obvious” severity as entirely or nearly unreadable before hovering 
(VC1, VC3, VC6), while two VCs effectively leave all text unobscured at all times 
(VC7, VC8). The VCs tend to interact with qualities that may typically be adjust-
able through accessibility settings, which is a complicating factor.

▶	 Implementable criterion. Three VCs utilize normal web display settings without the 
need for background images or pseudo-class workarounds that are not compat-
ible across browsers (VC2, VC6, VC8), while the remainder require background 
images or workarounds to implement. VC1 is a special case. Though strike-
through is readily available in HTML and in more rudimentary applications, it 
is not a customizable property in CSS. VC1 would be the most implementable 
if only one level of severity was to be signaled, but indicating multiple levels of 
severity with strikethrough currently requires a workaround.

The eight visual conventions have been implemented in a web-based simulation with 
readable code. This open resource enables others to reevaluate and even modify them, 
thus discovering additional strengths and weaknesses in the visual conventions.

5.	  Uncertainty Framework

5.1.	  Uncertainty Framework Development

One of the first tasks we undertook in our investigation was to define uncertainty in 
relation to LLM summaries for intelligence analysis. In our search of existing litera-
ture in early 2024, we found no uncertainty frameworks specific to LLM summaries 
for intelligence analysis. However, we did locate relevant research on trust in AI and 
automated decision aids (Zerilli et al., 2022; Fell et al., 2020; Heger et al., 2016; Manzey 
et al., 2012; Okamura & Yamada, 2020; Prabhudesai et al., 2023; Vaswani et al., 2017), 
as well as on uncertainty information and explanation visualization in other contexts 
(Karran et al., 2005; Skeels et al., 2010; Thomson et al., 2005). 
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Among these, Skeels et al. (2010) provided the most useful initial framework, having 
structured classification of uncertainty with what we believed to be sufficient range 
and granularity for visual exploration guidance. The framework identifies five types 
of uncertainty: completeness, credibility, disagreement, inference, and measurement 
precision. Skeels et al. (2010) isolated these types through an analysis of uncertainty 
across many scientific fields, including ecology, computational biology, and medicine, 
with a focus on improving information visualization — as in diagrams, not in the annota-
tion of text as is required in language analysis. 

Our revision of, and ultimate departure from, Skeels et al.’s (2010) framework was 
informed through biweekly conversations with collaborating experts in language 
analysis, computer science, and psychology. We asked them to speculate on what kinds 
of uncertainty might be associated with LLMs, and we tried to map their suggestions 
to Skeels et al.’s (2010) types. We began to remove types, add types, and rename types. 
We repeatedly needed to pull back to determine where exactly we were attempting to 
identify uncertainty — out in the world, in the sources, or in the summary itself? We 
ultimately decided to limit our investigation to the uncertainty types that might appear 
in the summary itself due to the probabilistic nature of LLM technology.

5.2.	  Overview of Uncertainty Types

Our LLM-oriented uncertainty framework is a contribution to research in the context 
of intelligence analysis, knowledge work, and interface design. Though it is not the 
result of a systematic study like Skeels et al.’s (2010) general uncertainty framework, a 
provisional framework provides the requisite a priori structure for subsequent empirical 
studies that could validate it or suggest adjustments. It is a necessary first step.

We call our framework the Uncertainty Framework for Explainable Summaries (UFES). 
We do not specify the intelligence context or language analysis in the title as we have 
adopted definitions that we believe more fundamentally address LLM summaries. 
There are five types of uncertainty in UFES, and they are defined as follows.

1.	 Meaning uncertainty: misinterpreting word sense for technical, cultural, or 
uncommon terms, or for jargon.

2.	 Reference uncertainty: mistaking associations from demonstratives (“those”), 
adverbs (“there”), definite articles (“the”), or pronouns (“they”).

3.	 Conjecture uncertainty: jumping to conclusions, incorrectly completing partial 
information, or making assumptions.

4.	 Credibility uncertainty: trusting a statement that was unserious, humorous, 
incongruous, a non sequitur, a manipulation, or an apparent lie.

5.	 Evidence uncertainty: making a claim without supporting evidence, either 
drawing from opaque training data or by hallucination.
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As suggested earlier, UFES primarily refers to uncertainty in summaries themselves, 
not uncertainty in source information, which is irreducible when that information 
is isolated. For instance, if a query addresses the possibility of life on Mars, and a 
summary states that there is no evidence of life on Mars, it is not a case of evidence 
uncertainty — the stated lack of evidence is an accurate accounting of a knowledge 
reality. Essentially, UFES is concerned with misleading claims in summaries, and it 
serves to identify the manner in which a claim may be misleading. 

Our thinking here was crystalized in a summary example that utilizes three fictional 
countries — Kobian administration officials discuss Avalon and Oceania. This example 
is provided in Table 2. The following summary claim is an accurate representation of 
the source material displayed in that table, in which “[indecipherable audio, 5′23″]” 
separates a pronoun from its thus unknown referent. An imagined summary provided 
by an LLM that consults the Table 2 source includes:

There is mention of an “ultimatum,” but an apparent gap in the source recording 
makes it impossible to determine who is making an ultimatum that will serve as 
a communication to Oceania, or if this is a serious ultimatum and the degree to 
which it is mission relevant.

Table 2. An imagined surreptitious recording between fictional characters André Silva and Baaba 
Owusu, and concerning fictional countries Avalon and Oceania. Line 4 includes a break in recording or 
transcription.

Line Transcription

1 Silva: He didn’t like having to give that speech as [indecipherable] those rural 
teachers. They aren’t going to see the big picture

2 Owusu: There is no big picture. It’s just what you say to them, and what you 
say to the big public schools. 

3 Silva: Look, it was all about timing. And that’s gonna be on the cycle for a 
couple of days, he gets to duck out. Look at what we have coming up. It’s 
manufacturing on the border, customs, coordination, the union bosses on 
both sides. The Avalon secretary 

4 [indecipherable audio, 5′23″]

5 [unidentified]: and he plans to make an ultimatum, quietly. 

6 Owusu: But that secret won’t keep. 

7 Silva: Sure but

8 Owusu: But Oceania will know what it means. They’re ready to act on it. It’s 
only days
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Though there is obviously irreducible uncertainty in the imagined source material — 
whatever was said in the missing five minutes — the summary’s claim itself is not 
uncertain. 

UFES could inform development of an LLM validation system by providing a starter 
language from which to articulate soft prompts. But the more immediate use of UFES is 
to improve human understanding of uncertainty in the LLM outputs. We now provide 
more detail on the five types of uncertainty we have defined here.

5.3.	  Additional Detail on Uncertainty Types in UFES

Meaning and reference uncertainty. Meaning and reference uncertainty emerged late 
in our development process, and only when we consciously confronted the mismatch 
between Skeels et al.’s (2010) numeric focus and our language focus. As such, these 
types have no corollary in their framework. We intend meaning uncertainty to be more 
localized, at the level of individual terms, and reference uncertainty to be distributed, 
as arising from relationships between statements. We considered “denotative” and 
“indexical” as alternative names for these types of uncertainty, respectively, because 
both deal with meaning derivation. But we opted for a more colloquial or less technical 
terminology. 

Reference uncertainty begs further explanation than its definition alone. Returning to 
the example of Table 2, consider a different LLM summary claim to the one used above: 

…The Secretary of Labor appears to be preparing to make an ultimatum regarding 
the manufacturing conflict…

Cross-referencing with Table 2, the gap in transcription noted in line 4 occurs between 
mention of “the Avalon secretary” and the “he” who is making an ultimatum. It is a 
questionable assumption that “he” is the secretary when there is a gap of over five 
minutes. Even attribution of “labor” to the secretary is questionable. It appears to be 
an assumption following “union bosses” in the sentence immediately preceding “the 
Avalon secretary.” These represent two degrees of reference uncertainty embedded in 
the claim that the Secretary of Labor is making an ultimatum. 

Conjecture uncertainty. Conjecture uncertainty bears some similarity to Skeels et al.’s 
(2010) inference uncertainty. In early stages of developing UFES, we had a broader 
definition of inference uncertainty. The difference is apparent in our notes:

An assertion is in some manner ambiguous, with more than one possible meaning 
available to complete it. An error occurs when a claim about the assertion relies 
on a misinterpretation (in cases of logically resolvable ambiguity), or otherwise 
fails to acknowledge the ambiguity inherent to the assertion (in cases of irreduc-
ible ambiguity). Misinterpretations and ambiguity can be rooted in: idiomatic 
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expressions; cultural nuances; context-specific phrases; polysemy; unconven-
tional sentence structure; conjugation; pronouns; rare or uncommon terms; 
technical jargon; tone; humor; or sarcasm. 

This transitional definition is so general that it embodies our revised sense of three 
types of uncertainty: meaning (“rare or uncommon terms”), reference (“pronouns”), 
and credibility (“sarcasm”). Basically, the transitional definition is too broad to be 
useful, and it is emblematic of the verbal gymnastics that were necessary to conform 
linguistic considerations to Skeels et al.’s (2010) numeric considerations. Ultimately, 
in addition to refining our own definition of a related kind of uncertainty, we opted to 
designate it conjecture to avoid a mismatched comparison with Skeels et al.’s inference.

Nevertheless, our conjecture uncertainty is admittedly difficult to isolate. To retain 
the focus on LLM summary generation, we emphasize that it refers to completing 
partial information without adequately acknowledging the completion act. Conjecture 
uncertainty occurs when an alternative summary claim could have been drawn from 
the same partial information. It is an assumption. This does embody aspects of Skeels 
et al.’s (2010) completeness uncertainty, but missing numeric values in a data set are 
far more conspicuous, and far less ambiguous, than partial linguistic information. The 
following two examples may help to clarify conjecture uncertainty further. 

First, imagine a scenario where there exists copious intelligence traffic about a series 
of meetings between an adversarial country’s president and a group of legislators on 
a particular issue, yet none of that traffic offers specific details about the meetings 
themselves. Instead, what is available are conversations among those legislators that 
occurred after the meetings, in which they complain about interpersonal dynamics 
and personal agendas (e.g., getting the chief of staff to admit that he is wrong about 
anything). If a summary characterized these meetings as the president strategizing 
against the legislators based solely on such traffic, it would have conjecture uncertainty. 
It is an assumption that the expressed feelings following the meetings transfer fully to 
the meeting’s agenda.

Second, imagine another scenario where available traffic inconsistently presents a 
fictional president’s views on anti-ballistic missile deployment. In two sources, he 
appears strongly and moderately for increased deployment, and in two other sources he 
appears strongly and moderately against it. Taken at face value, it could appear that the 
president has no strategy, or that he is obfuscating, and thus a summary may charac-
terize his views on the matter as “suggesting an absent or clandestine strategy.” However, 
if a closer look at the sources reveals that his statements (or insider statements about 
his views) were made in confidence and with conviction, the “absent” or “ clandestine” 
claim has conjecture uncertainty — it is a step too far in assumption. (We have played 
this scenario out further, where ordering the sources by date reveals that the president’s 
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views evolved over time — as in, the sources were all accurately capturing moments in 
a sequence.)

Credibility uncertainty. For credibility uncertainty alone we retain Skeels et al.’s (2010) 
name for a type. We did so because, though the original type does indeed focus on 
numerics, its concept of credibility transfers to linguistics in ways we do not find 
distorting. While we do expand the type’s definition, we do not feel the need to replace 
any major aspect of it.

The most straightforward interpretation of credibility uncertainty in LLM outputs is 
trusting the words of somebody inherently untrustworthy, and our definition does 
account for this. Skeels et al. (2010) note that a “human source may be considered 
untrustworthy based on past behavior or associations” (p. 76). Credibility uncertainty 
can also be more contextual. Some people may be inherently more credible than others 
based on their expertise and believing certain statements from inherently nonexpert 
sources will carry a degree of credibility uncertainty. Skeels et al. (2010) account for this 
as well: “…information from a specialist may lead to less uncertainty than information 
from a generalist…” (p. 76). 

We additionally consider situational factors. The situation in which a person makes a 
statement is an everpresent complication, whether that person is generally trustworthy 
or untrustworthy. If an expert or an insider is making a joke, they are not necessarily 
leveraging their beliefs, and thus their access to relevant knowledge does not validate 
the joke’s implications. And much speech is rhetorical, aimed at convincing others 
through argumentation more than through the explication of truth, even in casual 
conversation. In practice, there are not purely trustworthy or untrustworthy people. 
Instead there are situations in which individual statements may or may not be credible. 
Thus, credibility uncertainty refers to assertions themselves and not the people who 
make them. An assertion may be less credible due to its speaker’s identity, but it is the 
assertion itself that has credibility value in our framework — the statement is the thing.

Evidence uncertainty. When objective truth and complete understanding are not 
realistic goals, what does it mean to have or to lack “evidence”? The other four types 
of uncertainty in UFES all concern the interpretation of available information. Clearly 
a summary can include claims that are more thoroughly unfounded than they are 
uncertain in meaning, reference, conjecture, or credibility. 

In LLM summary generation powered by retrieval-augmented generation (RAG), an 
LLM has documentable access to its summary (of course) and the RAG sources, but 
not to the training data that constitutes its underlying foundational model. Evidence 
uncertainty occurs when there is a discrepancy between the summary and documentable 
sources. A claim is made in the summary for which no form of evidence is available. 
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It is impossible to know why an LLM made a claim if no evidence is given. If there is 
no basis for the claim (besides perhaps a biasing query), it is a case of hallucination. 
But this is indistinguishable from two other possibilities: that the claim came from 
the black-box training data; or that there was some kind of failure in documenting the 
normally documentable sources. What is most immediate in an intelligence analysis 
context is that a claim has no supporting evidence. This is what determines a course of 
action for a language analyst or for other users. 

Pulling out from an intelligence analysis context, this view of evidence uncertainty 
still has efficacy. Whatever the mechanism is — hallucination, training data, source 
disclosure error, or something else — a claim in a summary that cannot in any way be 
supported cannot be validated. 

6.	  Specifications for an LLM Validation System

This section outlines the design specifications for a Multiple Agent Validation System, 
contributing to the intelligence community and any other cases involving decision-
making and sensemaking with LLM summaries. These specifications are the product of 
all threads of the investigation and of sustained interaction with our multidisciplinary 
collaborators. As our exploration of uncertainty visualization increasingly raised issues 
of interface design, we asked language analysts what actions they might take when they 
encountered uncertainty in an LLM summary. They identified seven specific actions: 
(1) viewing source files, (2) asking the LLM about its sources, (3) assessing relevance 
to the query, (4) asking the LLM about its summary, (5) submitting a new query, 
(6) modifying their existing query, and (7) searching for more information elsewhere. 
This and other feedback eventually coalesced into an LLM validation system concept. 

6.1.	  The MAVS Concept

We propose a Multiple Agent Validation System (MAVS) to make knowledge workers 
more efficient while mitigating the limitations of LLM technology, and to facilitate 
healthy trust calibration by addressing common user struggles with automation. Our 
MAVS specifications include 10 discrete features, conceptually distributed among three 
virtual agents: a Query Agent, an Analytic Agent, and an Evaluative Agent. Whether 
or not these virtual agents are implemented in separate LLMs or as roles within a 
single LLM, they are instantiated in the feature set as distinct entities to aid the user 
in developing an accurate mental model — both of MAVS’s underlying processes and 
of LLM technology more generally. Figure 3 is a process diagram of MAVS. Note that 
validation — the V in MAVS — is completed by the user. 

We organize the feature set here according to the virtual agents. Table 3 lists how MAVS 
features address the trust calibration interface design strategies that emerged in the 

Table 3. How the 10 core MAVS features address the trust calibration interface strategies (Section 2). 
The virtual agents are identified as QA (Query Agent), AA (Analytic Agent), and EA (Evaluative Agent). 
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Table 3. How the 10 core MAVS features address the trust calibration interface strategies (Section 2). 
The virtual agents are identified as QA (Query Agent), AA (Analytic Agent), and EA (Evaluative Agent). 
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Figure 3. MAVS process diagram for the intelligence analysis context. Retrieval-augmented generation 
(RAG) focuses the system on intelligence traffic (i.e., collected sources). Summaries are available to 
users in three versions per the analytic sensitivity setting: restrictive (“rstr”), intermediate (“int”), and 
expansive (“exp”). 

Feature Agent Trust calibration interface strategies

Query History QA TC1: Transparency

Query Reshuffle QA TC4: Interactivity

Analytic Sensitivity AA TC4: Interactivity; TC5: Virtual Agents

Summary Sources AA TC1: Transparency

Visualization Sensitivity EA TC2: Visualization; TC3: Alignment; TC4: Interactivity; 
TC5: Virtual Agents

Uncertainty Visualization EA TC2: Visualization; TC3: Alignment

Uncertainty Alert Type 
Identification

EA TC1: Transparency; TC2: Visualization; TC3: Alignment

Flagged Sources EA TC1: Transparency

Evaluative Agent Chat EA TC1: Transparency; TC4: Interactivity; TC5: Virtual Agents

Evaluation Export EA TC1: Transparency

Table 3. How the 10 core MAVS features address the trust calibration interface strategies (Section 2). 
The virtual agents are identified as QA (Query Agent), AA (Analytic Agent), and EA (Evaluative Agent).
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literature review (Section 2, TC1–TC5). MAVS utilizes these key strategies to help users 
develop appropriate trust calibration with the goal of improving overall performance 
in human-machine collaboration. Figure 4 delineates areas within the simulation 
interface that are dedicated to the three virtual agents — the simulation interface is 
described in some detail in Section 7.1.

6.2.	  Query Agent Features

The Query Agent assists the user in the querying process. It has the lowest instantiation 
profile of the MAVS virtual agents.

Feature 1: Query history. The formality of the querying process, in which the user’s 
investigation is comprehensively represented as text inputs and text outputs, affords a 
remarkably complete and accurate record of that investigation. The query history feature 
documents all user queries in a listing to which the user can return. The Query Agent 
dynamically generates short titles for queries, as commercial LLM products currently 
do. This listing indicates adjustments to queries resulting in distinct summaries with 
index counts of two and greater. 

Feature 2: Query reshuffle. Prompting — writing queries — is a special skill and it can 
be done poorly, reducing or reversing the effectiveness of LLM summaries. With the 
query reshuffle feature, the user can request that the Query Agent analyze and improve 
their query, producing a new summary. This is an established capability for AI given the 
right training. A frequent outcome of query revision is debiasing, removing elements of 
queries that can push results in an inappropriate direction. For instance, the following 
query is a directive, not a question, which could effectively coax an LLM into confirming 
the query premise irrespective of the evidence: “Explain Nicolau’s plan for anti-ballistic 
missile development and expansion.” (Rysz Nicolau is president of the fictional country 
Kobia.) The directive assumes that Nicolau indeed has plans for such development and 
expansion. A debiased version of this prompt might be: “Does Nicolau have any plans for 
anti-ballistic missiles?” Query reshuffle modifies the query, which causes the Analytic 
Agent to generate a new summary, adding to the index count of the  pre-shuffled query’s 
listing in the query history. 

6.3.	  Analytic Agent Features

The Analytic Agent responds to the user’s query by drawing from a vast quantity of 
information and returning a summary. This is probably the most familiar role for 
an LLM. 

Feature 3: Analytic sensitivity. The analytic sensitivity feature permits the user to 
influence how the Analytic Agent generates summaries with settings of expansive, 
intermediate, and restrictive. The expansive setting increases discovery by presenting 
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Figure 4. The three virtual agents in MAVS (top) as segmented in the full simulation interface (see 
Section 7.1). The three panels at bottom cycle through the area occupied by the Evaluative Agent chat 
at center right. 

Query Agent Analytic Agent

Integrated Interface

Evaluative Agent
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more possibilities to the user, but with a corresponding decrease in confidence. This 
may be appropriate in exploratory fact-finding. The restrictive setting results in greater 
confidence, but with lesser discovery that may overlook low-likelihood but potentially 
high-impact possibilities. This may be appropriate in crisis situations. As a setting that 
can be toggled, analytic sensitivity allows the user to see three versions of the Analytic 
Agent’s summary for each query. 

The analytic sensitivity feature could evolve iteratively through training and soft 
prompts. One possible method of implementation is for the Analytic Agent to 
independently generate n summaries, and then to compare those summaries. Claims 
that are shared across the highest proportion of independent summaries could be 
emphasized in a single common-claim summary — what is displayed with the restric-
tive setting. Reasonably strong claims that appear less frequently could be prioritized 
for a single uncommon-claim summary — some of what is displayed with the expansive 
setting. This method does beg the question as to how to keep the expansive summary to 
a reasonable length while still embodying some of the common claims, which should 
certainly not be ignored. Restrictive summaries may prove less useful due to the care 
taken to maximize reliability. 

Feature 4: Summary sources. The ability to evaluate an LLM’s claims is contingent upon 
access to the source material from which it reproduces patterns of language. Current 
LLM technology permits an accounting of this source material through retrieval-
augmented generation (RAG). RAG enables an LLM to access a data set and to  explicitly 
cite the sources of its claims in that data set — in contrast to the black-box behavior 
normally associated with LLMs. The summary sources feature discloses the specific 
sources the Analytic Agent used to generate a given summary. A relevant excerpt of the 
source is paired with metadata — in our case, a file code and an indication of recording 
medium — and the user can open the source directly to inspect it. The user can also 
remove a source from consideration, in which case the summary updates and the query 
history listing index count increases. Crucially in MAVS, the Evaluative Agent also has 
access to the disclosed summary sources, which is the basis of its validation process. 

6.4.	  Evaluative Agent Features

The Evaluative Agent, the defining factor in MAVS, embodies an atypical role for an 
LLM agent. It utilizes specialized training and RAG to enact UFES (the uncertainty 
framework). The Evaluative Agent helps the user understand the Analytic Agent and 
validate its outputs. Ultimately, it evaluates congruence between the Analytic Agent’s 
summary and its disclosed sources.

Feature 5: Visualization sensitivity. The visualization sensitivity feature permits the 
user to control when the Evaluative Agent bothers to provide markup, based on the 
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severity of uncertainty. Settings — exacting, intermediate, or lenient — characterize how 
the analyst asks the Evaluative Agent to behave. In attempting to recognize all instances 
of uncertainty in the summary, the exacting setting is the most likely to lead to mistak-
enly flagged passages. However, it is the least likely to overlook uncertainty — i.e., the 
most prone to false positives. The lenient setting results in more reliable uncertainty 
alerts. It is least likely to mistakenly flag instances of uncertainty, but most likely to 
overlook uncertainty — i.e., the most prone to false negatives. Unlike analytic sensitivity, 
toggling visualization sensitivity does not change the content of the summary. Instead, 
it flags more or fewer passages. The settings are operationalized according to plain 
language visible to the user: the lenient setting only flags obvious cases of uncertainty; 
the intermediate setting additionally flags likely cases; and the exacting setting addition-
ally flags conceivable cases. There is no user option to bypass flagging obvious cases of 
uncertainty, as this would offer no initial means to validate the work of the Analytic 
Agent, hindering trust calibration.

Feature 6: Uncertainty visualization. There is an emotional component to uncertainty 
when there are professional stakes involved, and especially when there are security 
implications. In the flow of knowledge work, it is desirable that the user’s emotional 
or gut sense of information is positively correlated with its certainty. The uncertainty 
visualization feature obscures passages in the summary commensurate with their 
assessed uncertainty severity. The levels of uncertainty controlled by visualization 
sensitivity — conceivable, likely, and obvious — are represented by increasing degrees 
of masking. A visual convention for achieving this may fully obscure obvious cases of 
uncertainty. However, cursor hover states for the summary itself permit the user to read 
flagged passages by responsively improving legibility. 

Feature 7: Uncertainty alert type identification. To make accurate assessments when 
validating statements that have some degree of irreducible uncertainty, knowledge 
workers need to understand the basis of the uncertainty. We initially considered visual-
izing types of uncertainty instead of only severity level, but decided that this gives the 
user too much to learn and is distracting. Instead, the uncertainty alert type identifica-
tion feature verbally identifies the type of uncertainty adjacent to the summary and only 
upon inspection. The Evaluative Agent identifies which of the five types of uncertainty 
is the reason a given passage was flagged, and concise definitions are provided for the 
types within the interface. 

Feature 8: Flagged sources. An Evaluative Agent will be no more perfect than an Analytic 
Agent. Therefore a knowledge worker must be able to leverage their expertise to assess 
the Evaluative Agent’s outcomes when validating the Analytic Agent’s outcomes. The 
Evaluative Agent reports which of the Analytic Agent’s disclosed sources led to an 
uncertainty alert. The flagged sources feature mimics the summary sources feature, 
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allowing the user to directly inspect sources in relation to an alert. An excerpt and 
metadata are immediately available, and the user can jump to a highlighted portion of 
the source information to begin the validation process, or they can open up the entire 
source. 

Feature 9: Evaluative Agent chat. Providing users with a natural language mode of 
inquiry reduces the need to learn technically peculiar or unnatural interactions. A chat 
feature allows the user to engage in a conversation with the Evaluative Agent. When 
the user selects an individual flagged passage, the Evaluative Agent proactively explains 
why it was flagged. The user can engage the Evaluative Agent in conversation about the 
types of uncertainty, even if the agent does not tend to offer this information upon its 
initial description. This enables users to exert some control over LLM outputs, thus 
facilitating trust calibration.

Feature 10: Evaluation export. The more efficient augmented knowledge work becomes, 
the more difficult it will be for users to keep track of their investigations. The evaluation 
export feature documents the querying process for the user, along with all uncertainty 
alerts and interactions with the Evaluative Agent. In an intelligence analysis context, 
this is doubly important for compliance (i.e., aligning with strict regulations for 
reporting and documentation). 

A robust implementation of MAVS would include these 10 features. Many of them can 
be experienced in the simulation interface (discussed in Section 7.1 and available in 
Peterson & Armstrong, 2024). 

7.	  LLM Validation Prototypes

The LLM validation prototypes presented in this section contribute to knowledge 
work and the intelligence community in two important ways: they explicitly illustrate 
specifications that could be operationalized for practice (or for research in advance of 
practice); and they serve as educational tools that can help language analysts understand 
the potential of AI and set the stage for healthy trust calibration. 

Scenarios situate design investigations within real-world contexts. In the scenario 
we developed for this investigation, a United States language analyst Sloane has been 
assigned to monitor and investigate the fictional country of Kobia and its president Rysz 
Nicolau. Our team employed this scenario within a simulation interface (in interac-
tive demonstration form) and in three additional narrative interfaces (in video form). 
These prototypes are available in Peterson and Armstrong (2024). To most effectively 
demonstrate key MAVS functionality, we selected specific sections of the scenario to 
highlight within each prototype. The scenario content includes summaries, source 
excerpts, and chat scripts. 
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7.1.	  Simulation Interface

The first Multiple Agent Validation System prototype is a simulation interface populated 
with scenario content. This prototype provides a realistic first-person experience of 
numerous MAVS features. Users play the part of Sloane as she engages in analysis of 
President Nicolau and his administration, with a narrative that permits significant 
lateral exploration through optional content. The web-based simulation interface was 
built in HTML, CSS, and JavaScript. While it does not incorporate actual AI — instead 
simulating AI — it is based on a tool developed by LAS (the collaborating lab) that 
utilizes an LLM and RAG with representative intelligence traffic.

We utilized a familiar control panel metaphor for the visual design of the interface 
to reduce cognitive load. Because simulation users are being asked to learn about 
an unfamiliar system (MAVS), they are not additionally asked to learn new interface 
conventions (Figure 5). The incomplete nature of the embodied scenario complicates 
the educational aspect of the prototype. Interface elements that are available at one 
time (i.e., that are scripted) are not available at others. To guide users through the 
scenario and to make sense of what is and is not interactable along the way, an instruc-
tional panel overlays one corner of the interface (Figure 6). The instructional panel 
suggests next steps with check boxes for completed tasks. 

Figure 5. Simulation interface. In the pictured state, the user is hovering over the evidence uncertainty 
alert icon, which automatically highlights all evidence uncertainty passages in the summary.
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Another panel overlay permits users to select among eight uncertainty visualization 
styles to be utilized in the simulated LLM summaries (Figure 7). Like the instructional 
panel, the visualization panel would not be included in MAVS, for which a single 
visual convention for representing uncertainty would have been adopted. As such, the 
simulation interface allows practicing language analysts to experience different visual 

Figure 6. Simulation interface instructional panel with task hint. As listed tasks are completed, they are 
checked off. Hovering over incomplete tasks activates hints that point to interface elements.

Figure 7. Simulation interface visualization panel with corresponding visual convention displayed in 
the summary. 
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conventions and consider their own preferences, leaving open the possibility of an 
end-user-informed determination of the ideal visual convention to adopt. In this way 
and others the simulation interface is a rich experimental stimulus that could be used 
to empirically test MAVS before costly development efforts are undertaken. 

7.2.	  Narrative Interfaces

The simulation interface leverages familiarity by suggesting a control panel metaphor. 
However, this metaphor limits the potential capabilities of emergent technology as 
envisioned in MAVS. We thus also developed scenario videos for three distinct MAVS 
prototypes that are based on unconventional UX patterns, which may more naturally 
exemplify MAVS functionality. To focus the resultant narrative interfaces, we looked 
to the trust calibration (TC) literature and related interface design strategies TC1–TC5 
(see Section 2). Based on these sources, we wrote three prompts to guide our interfaces.

1.	 Transparency through interrogation and verification: How might the interface 
utilize query recommendations, nudging, verification, and source inspection 
to calibrate trust between users and virtual agents? (Corresponds with TC1: 
Transparency and TC3: Alignment.)

2.	 Multi-agent dialogue: How might the interface use conversational AI to calibrate 
trust between users and virtual agents? (Corresponds with TC3: Alignment and 
TC5: Virtual Agents.)

3.	 Context-driven: How might the interface respond to the needs of specific users, 
customers, or storylines to calibrate trust between users and virtual agents? 
(Corresponds with TC3: Alignment and TC4: Interactivity.)

We utilized common UX methods to engage with our collaborators as we developed the 
narrative interfaces, including personas, scenarios, task flows, low- and high-fidelity 
sketching, and what-if prompts. 

Narrative interface 1: Transparency through interrogation and verification. Language 
analysts want to leverage their own intricate understanding of human language to verify 
and interrogate data themselves. The first narrative interface provides an uncertainty 
alert report panel with a natural language explanation of identified uncertainty errors, 
along with key excerpts of flagged sources and quick access to the full sources themselves 
(Figure 8). This collects elements together in one space that the simulation interface 
distributes among separate zones. The uncertainty alert report panel reconfigures 
to accommodate the Evaluative Agent chat, and as with the simulation interface, the 
conversational interaction permits the analyst to submit operator notes — records for 
the chain of command and compliance — as they are suggested during sensemaking. 

The first narrative interface deviates most dramatically from the simulation interface. 
It presents the user’s workflow as branching diagrams of expanded and collapsed 
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Figure 8. First narrative interface. Prompt-summary elements expand and collapse to varying degrees 
and their arrangement reflects the language analyst’s investigatory process. 
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prompt-summaries. In the central portion of the interface, prompts are chained 
together and break out when expanded to display summaries and other elements. In a 
lower query visualization strip, queries are minimized into icons and are organized into 
categories, while also reflecting investigatory pathways through chained connections. 
The interface constantly reconfigures as the user progresses. When appropriate, it 
nudges the user to revisit key points in the querying process and occasionally appends 
key insights to query icons. The interface enables the user to study how the Analytic and 
Evaluative Agents arrive at their conclusions, which helps the user better understand 
the system’s capabilities.

Narrative interface 2: Multi-agent dialogue. The second narrative interface overtly 
presents the Analytic and Evaluative Agents as separate entities, embodied in adjacent 
floating panels. The user can converse with either virtual agent using the agent’s 
panel, which grows slightly larger and includes a softly pulsing red light to reflect 
active  engagement. Separating the virtual agents helps the user to conceptualize MAVS 
functionality by distinguishing analytic processes from evaluative processes. This 
facilitation is furthered with floating queries that can be dragged into a virtual agent’s 
panel for a response, embodying the virtual agent with a recipient role. The pattern of 
virtual agents responding to each other, back-and-forth and through reciprocal panel 

Figure 9. Second narrative interface with the Evaluative Agent active. The Analytic and Evaluative 
agents are presented as distinct entities that can respond to one another, and they make recommen-
dations for the user. 
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shrinking and growing behaviors, strengthens this embodiment. The greater the degree 
to which the interface distinguishes virtual agents, the easier it will be for the user to 
differentiate their system functions. 

Narrative interface 3: Context-driven. The third narrative interface is an unconventional 
user interface that reconfigures itself as the user’s investigation evolves (Figure 10). 
The user’s investigatory process is structured as one long conversational flow. Both 
Analytic and Evaluative Agents converse with the user within this flow. The Analytic 
Agent auto-fills the analytic sensitivity setting according to the current storyline’s 
dynamics. The user can adjust the setting, but recommendations are clearly indicated, 
possibly encouraging the user to experience settings they would not otherwise 
utilize. Recommended settings consider a variety of factors, such as the criticality of 
the storyline and past user behavior in similar situations. The Evaluative Agent also 
recognizes the criticality and greater context of the current storyline. For instance, it 
does not merely flag passages for contextually relevant uncertainty, it does so through 
a liquid panel that flows into the Analytic Agent’s summary results. This violation of 
conventional panel integrity in interface design is a visual analogy for distinct virtual 
agent interactions and an incisive form of evaluation. Finally, the entire screen display 
also adjusts contextually, with the color scheme changing and element count reducing 
in critical high-stakes storyline periods to focus the user’s attention. 

These narrative interfaces provided an avenue for investigating trust calibration and 
interface design beyond the initial simulation interface. They embrace the potential of 
machine learning capabilities to build trust through transparency and conceptualiza-
tion. The video format for presenting these interfaces guides viewers through a coherent 
workflow, making unconventional UX patterns sensible upon initial viewing. The novel 
element display and UX patterns within the narrative interfaces may potentially inform 
AI-based interface design beyond our investigation’s focus on intelligence analysis. 

8.	  Application and Transfer of Results

This section outlines aspects of our investigation that may contribute to communities of 
practice beyond intelligence analysis. We identify two application areas where investi-
gation outcomes may be particularly relevant: LLM-assisted clinical decision-making in 
medicine and LLM-assisted climate forecasting. We examine relevant research in each 
area, viewing challenges related to uncertainty through the lens we have established. 
This suggests future work, but it also serves as a demonstration of how investigation 
outcomes can be adapted for additional areas not covered here. 

Clinical decision-making in medicine. Researchers are actively exploring how LLMs 
can enhance clinical decision-making and provide diagnostic support in medicine 
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Figure 10. Third narrative interface. Chat elements flow into one another, and the system reconfigures 
itself in high-stakes moments. 
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(Nasarian et al., 2024; Panagoulias et al., 2023; Prabhod, 2023; Rajashekar et al., 2024; 
Savage et al., 2025). Some work has focused more narrowly on emergency care, digital 
pathology, and telehealth (Taylor et al., 2024; Kwan, 2024; Ullah et al., 2024). A common 
application of LLMs in clinical decision-making is assisting clinicians in prioritizing 
differential diagnoses (Prabhod, 2023; Taylor et al., 2024). Differential diagnosis is the 
systematic process used by clinicians to identify the most likely diagnoses from a set of 
competing possibilities (Cook & Décary, 2019). While established systems support this 
process, there is growing interest in expanding AI’s role to mitigate diagnostic errors, 
improve information gathering, and facilitate diagnostic feedback (Taylor et al., 2024). 

Despite the recognized potential of machine learning in this domain, a frequently 
cited challenge to integration is the lack of explainability in LLM-augmented systems, 
which has been shown to undermine user trust and hinder technology adoption 
(Panagoulias et al., 2023; Rajashekar et al., 2024; Savage et al., 2025; Ullah et al., 2024). 
This is  particularly critical in high-stakes medical environments, where the urgency 
of decision-making, the fragmented nature of data, and the potential for cognitive 
overload leave little tolerance for uncertainty. Some researchers have focused on 
developing evaluation systems to measure or minimize uncertainty, but the litera-
ture does not fully address how to communicate uncertainty effectively to users in a 
medical context (e.g., Panagoulias et al., 2023; Savage et al., 2024). Nasarian et al. (2024) 
argue that many of the current explainable AI efforts are developer-centric, and that 
they tend to overlook the actual needs of end users. They further suggest that while 
machine learning professionals and developers tend to favor technical explanations, 
clinicians and patients would benefit from more intuitive visual formats. Both Prabhod 
(2023) and Kwan (2024) argue that future research should take a user-centered design 
approach, and should explore ways to provide training and meaningful engagement 
for clinicians. Kwan (2024) emphasizes that understanding user needs, defining user 
personas, and building prototypes are essential steps in developing AI-driven systems 
that can support clinical decision-making. Similarly, Taylor et al. (2024) emphasize the 
importance of designing AI tools that integrate seamlessly into clinician workflows 
and platforms without adding unnecessary complexity — namely in electronic health 
records (EHRs). 

Climate forecasting. Similar issues arise in climate forecasting, where LLM-aug-
mented systems must balance accuracy, interpretability, and usability to support not 
only decision-making, but also data analysis, communication to lay audiences, and 
generation of climate scenarios that can further inform decisions (Biswas, 2023). A 
 preliminary search anecdotally suggests that the research in this area may not be as 
established as in medical diagnosis — most relevant work is in the form of unvetted 
uploads to preprint servers that we do not cover here. 
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Biswas (2023) explored how ChaptGPT could be leveraged to support climate research 
and policymaking. In this context LLMs are useful for generating instructive climate 
scenarios. However, the tendency of LLMs to hallucinate is significant due to limited 
context and expertise on climate data. For this reason, Biswas (2023) suggests that AI 
be used alongside traditional climate research methods, rather than as a replacement. 
Vaghefi et al. (2023) developed a specialized LLM, ChatClimate, to respond to queries 
related specifically to climate science. Their goal in creating this tailored model was 
to address challenges like hallucination and the presence of outdated information that 
might arise when using general purpose models. ChatClimate was not developed to 
replace the kinds of decision-making currently done by climate experts, but to increase 
the speed at which quality information on climate science can be accessed. 

In contrast to broader applications of LLMs in climate science, Lawson et al. (2025) 
focused on weather forecasting at a more immediate ground level. They examined 
how well ChatGPT could analyze meteorological imagery and communicate hazard 
summaries in English and Spanish. ChatGPT struggled with the same challenges 
encountered in other climate applications, including hallucination and a lack of 
explainability and trustworthiness. Lawson et al.’s (2025) findings suggest that work 
remains to be done. Since these models are being leveraged for both long-term climate 
projections and real-time weather hazards, better representations of uncertainty could 
help facilitate trust calibration and generally improve system performance.

Implications. Our investigation offers several contributions that may be relevant to 
both clinical decision-making in medicine and climate forecasting, where LLM-aug-
mented systems currently struggle with explainability and trust. The Uncertainty 
Framework for Explainable Summaries (Section 5) could help both clinicians and 
climate researchers interpret model outputs more effectively. The framework’s 
pairing of evidence and credibility uncertainty would add nuance to understanding 
of uncertainty in both application areas, and the Multiple Agent Validation System’s 
Evaluative Agent chat feature (Section 6) would help climate scientists vet the outdated 
information they frequently encounter. MAVS generally facilitates the rapid informa-
tion gathering important in both application areas. In clinical settings, it could help 
mitigate the risks of misdiagnosis by ensuring AI-assisted insights are more transparent. 
In climate forecasting, it could improve trust in AI-generated climate scenarios by 
providing clearer explanations of LLM limitations. MAVS was conceptualized through 
user-focused design exploration, and thus does not suffer from the “developer-centric” 
emphasis of AI efforts in clinical decision-making (Nasarian et al., 2024). 

A key investigation outcome for both application areas is the open resource of visual 
conventions for representing uncertainty in LLM-generated summaries (Section 4 and 
Section 7.1). The particulars of an application space are likely to influence valuation of 
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visualization efficacy, and the emergent criteria for selection can scaffold fresh valuation 
(Section 4). These contributions address core issues of accuracy and interpretability in 
domains where decisions have real-world consequences.

9.	  Discussion

Automation transparency has a positive impact on user task performance (van de 
Merwe et al., 2022). Knowledge workers need insight into the LLM systems they increas-
ingly rely upon. And uncertainty is unavoidable with LLMs. While communicating 
this uncertainty benefits users, user outcomes differ based on the indicated degree of 
uncertainty — e.g., Kunze et al. (2019) noted participant behavioral changes at three 
levels of uncertainty, which correspond with our signification of conceivable, likely, 
and obvious levels. 

Kunze et al. (2019) highlighted a “drawback” to displaying uncertainty: users need 
to look away from the task at hand to attend to visualizations (p. 355). But they were 
studying automated driving systems. When we explored uncertainty visualization, 
we did consider adjacent visualizations of uncertainty separate from the uncertain 
summaries, but our eight potential visual conventions are all inline, occurring directly 
within uncertain textual passages themselves (Section 4). The relevant literature on 
visualization tends to address standalone representations — the uncertainty framework 
we started with, Skeels et al. (2010), is a good example. The simple fact that our 
recommended forms of signification occur at the locus of uncertainty for LLMs — in 
and as written language — is possibly a powerful visual affordance for user interface 
design and transparent AI. It is possible for uncertain text to be — really, to appear — 
uncertain itself. This seems more desirable than providing an additional thing for 
overtaxed users to look at.

A result of interdisciplinary collaboration between language analysts, computer 
scientists, psychologists, and designers, this investigation provides human-centered 
recommendations that can guide LLM technology development. The expertise of the 
extended collaborative team ensures that the Multiple Agent Validation System, as 
described, is both implementable and relevant. This places our speculative design 
squarely in the present. 

As a discovery-based process, this investigation suggested new research questions 
instead of answering preconceived ones. There are a variety of ways to continue 
this work. The most direct way would be completing the theory building and testing 
cycle through the empirical study of core project premises. The simulation interface 
(Section 7.1) could be used to test the MAVS summary validation process with intelli-
gence analysts. The objective would be to identify uncertainty visualizations and 
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interface features that optimize intelligence analysts’ ability to accurately validate 
LLM summaries with analytic and evaluative assistance from AI (as simulated, not 
implemented). This suggests two research questions:

	▶ Research Question 1 (RQ1): What preferences do intelligence analysts have in 
the design of uncertainty communication (including visualization), and how 
do those preferences translate into trust attitudes and dependence behaviors?

	▶ RQ2: When intelligence analysts are presented with potentially erroneous 
information, what actions do they take to validate and integrate the informa-
tion with existing schemas, and how does this influence the performance of the 
analyst-automation team?

Answering these research questions would result in design principles that could 
guide work in human-machine teaming, explicit design implementations for effective 
communication about the uncertainty of LLMs, and an understanding of analyst 
information validation behavior based on trust. 

Individual components of this investigation suggest other possibilities. Collaboration 
with experts and design exploration suggested deviating from Skeels et al.’s (2010) 
framework for uncertainty, but unlike that framework, our proposed Uncertainty 
Framework for Explainable Summaries has not been validated. A qualitative study of 
UFES with members of the intelligence community and LLM developers could utilize 
the framework’s five types as a priori codes to refine it. Likewise, there has been no 
validation of the eight implemented visual conventions for representing uncertainty. 
Qualitative or quantitative research with intelligence analysts could tease out how 
impressions of the visualizations correspond with, and contribute to, mental models 
of uncertainty. 

	▶ RQ3: What types of uncertainty are present in LLM summaries, and how do 
intelligence analysts and LLM developers conceptualize these types?

	▶ RQ4: How does the visualization of uncertainty in LLM summaries impact 
conceptualizations of uncertainty?

The results of studies like these could lead to modifications to MAVS specifications, such 
as altering the descriptors for analytic and visualization sensitivity. 

As described in Section 8, this investigation has relevance for clinical design-making in 
medicine and climate forecasting. There are potential investigations in these transfer 
domains. For instance, there is interest in improving information gathering for differ-
ential medical diagnosis (Taylor et al., 2024), and in generating climate scenarios that 
are context-sensitive (Biswas, 2023). 



VISIBLE LANGUAGE  2025  VOL. 59  NO. 2 212

	▶ RQ5: How do clinicians conceptualize and utilize restrictive and expansive 
settings for differential diagnosis when an analytic sensitivity feature is available 
in MAVS?

	▶ RQ6: How do climate scientists prompt an Evaluative Agent to vet an Analytic 
Agent’s generated climate scenarios in climate policymaking?

In terms of application, the speculative interfaces explored in this investigation 
provide various pathways for developing MAVS according to context and constraints. 
 Operationalizing the behaviors of the Query, Analytic, and Evaluative Agents would 
require significant iteration in training LLMs, but fundamentally new training methods 
need not be developed. 

This investigation resulted in visual conventions for representing uncertainty in LLM 
summaries, a related framework for uncertainty, specifications for an LLM validation 
system, and situated prototypes of such a system. We have been explicit about the 
investigation’s contributions throughout to promote application in and beyond the 
intelligence analysis context. Trust calibration plays a key role in successful human-
machine teaming. We will never move beyond human limitations if we cannot trust AI 
to support and augment our abilities. User interface design plays a critical role in trust 
calibration because interfaces lie between humans and automated systems. Through 
thoughtful interface design that prioritizes transparency and human understanding, 
we can build the foundations of trust necessary for humans and AI to work together 
effectively, revealing new possibilities.
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